什么是“纳米”
所谓“纳米”,就是法定计量中一种长度单位的名称,其单位符号为nm。1nm等于10亿分之一米,即相当于10个氢原子排成直线的长度。当材料的粒径为0.1-100nm时,统称为纳米材料。纳米材料按颗粒尺寸的大小可划分为3个等级:粒径为10-100nm称为纳米级;粒径处于2-10nm范围的称为分子级;粒径小于2nm的称为原子级。
科学家发现,当物质结构单元(如晶粒或孔隙)小到纳米量级时,物质的性能发生了重大变化,不仅大大改善了原有材料的性能,甚至具有了新的性能或效应。由于纳米颗粒的小尺寸效应、表面效应、宏观量子遂道效应,使纳米材料具有了常规材料所没有的特殊性能。例如,1g普通的纳米材料,如果将其铺展开来,可以达到640m2。如此大的比表面积将会赋予纳米材料很多独特的性能。
一般说来,纳米技术是指在纳米尺寸范围内,通过直接操纵和安排原子、分子来创造物质。因此,纳米塑料是指无机纳米粒子以纳米级尺寸(一般为1-100nm)均匀分散在聚合物基体树脂中形成的复合材料,也被称为聚合物基纳米复合材料。由于纳米粒子尺寸小,彼此间距离非常近,因此,具有独特的量子尺寸效应、表面效应、界面效应、体积效应、宏观量子隧道效应、小尺寸效应和超塑性,从而使纳米塑料具有独特的物理力学性能,成为复合材料发展的最前端产品之一。
聚合物/纳米复合材料
常用的无机纳米粒子包括硅酸盐、碳酸钙、SiO2、TiO2、SiC、Al2O3、云母等,根据基体树脂不同,纳米复合材料可分类为:纳米尼龙、纳米聚烯烃、纳米聚酯、纳米聚甲醛等。世界上最早的纳米塑料工业化应用是1991年日本丰田中央研究所和尼龙树脂厂宇部兴产(UBE)公司共同开发的、用做汽车定时器罩的纳米尼龙6,从此拉开了纳米塑料快速发展的序幕。近几年来,世界各国都竞相投入资金和人力,加大了纳米塑料的开发力度和产业化步伐,特别是工业发达国家,目前已经形成了一个纳米塑料产业。
与原来的基体树脂相比,纳米塑料提高了材料的力学性能和热性能。复合材料的弯曲模量(刚性)可提高1.5-2倍,摩擦和耐磨损性及耐热性也得到提高,热变形温度可上升几十度,热膨胀系数则下降为原来的一半。同时,纳米复合材料具有更多、更高的功能性,如阻隔性、阻燃性等。复合材料的透明性、着色性、导电性和磁性能也得到了相应的提高。纳米粒子的加入也提高了复合材料的阻燃等级,使材料对二氧化碳、氧的透过率下降。另外,纳米粒子填充聚合物还能提高复合材料的尺寸稳定性。
纳米塑料的无机纳米粒子加入量较小,一般为2%-5%,仅为通常无机填料改性时加入量的1/10左右,因而复合材料的密度与原来树脂相比几乎不变或增加很小。因此,不会因密度增加过多而增加下游塑料加工厂的成本,也没有因填料过多导致其他性能下降的弊病。由于纳米粒子尺寸小,因此成型加工和回收时几乎不发生断裂破损,具有良好的可回收性。纳米塑料的缺点与通常无机填料一样,纳米粒子的加入会使塑料的焊接强度有所下降,有些纳米塑料如纳米尼龙的韧性(冲击强度)有所下降,但纳米聚烯烃的韧性却有所提高。
由于纳米塑料对材料的改性不是通过制备新结构塑料完成的,因此,利用现有设备或稍加改造便可进行生产,设备投入资金少,这两点也是推动和加快纳米塑料商业化的有利因素。
纳米塑料生产方法
纳米塑料的生产方法主要有四种:插层复合法、原位复合法、分子复合法和超微粒子直接分散法。
插层复合法是目前制备纳米塑料的主要方法。首先将单体或聚合物插入经插层剂处理后的层状硅酸盐(如蒙脱土)之间,破坏片层硅酸盐紧密有序的堆积结构,使其剥离成厚度为1nm左右,长、宽为30-100nm的层状基本单元,均匀分散于聚合物基体中,实现聚合物高分子与层状硅酸盐片层在纳米尺度上的复合。插层复合法又可分为插层聚合法和聚合物插层法。插层聚合法是先将聚合物单体分散、插层进入层状硅酸盐片层中,然后原位聚合,利用聚合时放出大量的热克服硅酸盐片层间的作用力,并使其剥离,从而使硅酸盐片层与塑料基体以纳米尺度复合。聚合物插层法是将聚合物熔体或溶液与层状硅酸盐混合,利用化学和热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀地分散于聚合物基体中。该法的优点是易于实现无机纳米材料以纳米尺寸均匀地分散到塑料基体树脂中。
原位复合法包括原位聚合法和原位形成填料法。将纳米粒子溶解于单体溶液再进行聚合反应,叫原位聚合法。其特点是纳米材料分散均匀。原位形成填料法也叫溶胶凝胶法,是近年研究比较活跃和前景看好的方法。该法一般分两步,首先将金属或硅的硅氧基化合物有控制地水解使其生成溶胶,水解后的化合物再与聚合物共缩聚,形成凝胶,然后对凝胶进行高温处理,除去溶剂等小分子即可得到纳米塑料。
分子复合法代表性的产品是液晶聚合物(LCP)系纳米塑料。利用熔融共混或接枝共聚、嵌段共聚的方法,将LCP均匀地分散于柔性高分子基体中。原位生成纳米级的LCP微纤,其尺寸比一般纳米复合材料更小,分散程度接近分子水平,因此称为分子复合法。其优点是可大幅度提高柔性高分子基体树脂的拉伸强度、弯曲模量、耐热性、阻隔性。
超微粒子直接分散法包括乳溶共混法、溶液共混法、机械共混法、熔融共混法等,有实际意义的为熔融共混法,其他方法难于达到理想的分散效果。例如,机械共混法虽然简单,但很难使易团聚的无机纳米粒子在塑料基体中以纳米尺寸均匀分散。用捏合机、双螺杆挤出配混机将塑料与纳米粒子在塑料熔点以上熔融,混合的难点和关键是要防止纳米粒子团聚,故一般要对纳米粒子进行表面处理。表面处理剂有兼容剂、分散剂、偶联剂,并经常使用两种以上表面处理剂。另外,要优化熔融共混装置结构参数以达到最佳分散效果。该法工艺简单,纳米粒子与复合材料制备分步进行,易于控制纳米粒子的形态和尺寸。
纳米塑料的应用
目前产量最大的纳米塑料是纳米尼龙,其次是纳米聚烯烃。另外,还有纳米聚酯、纳米紫外固化聚丙烯酸酯树脂、纳米聚酰亚胺、纳米聚甲醛等。其应用主要是包装、汽车和机电工业领域。利用纳米塑料的阻隔性,可用于食品保鲜包装,延长食品保质期;利用纳米塑料耐热性和良好的力学性能,可用作汽车零部件。例如汽车发动机罩、定时脉冲器壳体、贮油罐、燃油管道系统、各种电子接插件、导管、电话机壳体、工具手柄、栏杆、调理器具手把、高润滑低流阻管道等。由于刚性高,纳米塑料还可以用作薄壁复杂结构制品,降低重量和成本。另外,由于纳米塑料具有阻燃性,是目前替代含卤阻燃剂的理想产品。
代表性产品
1、纳米尼龙
美国聚酯生产厂Eastman化工公司和纳米粘土供应厂Nanocor公司共同开发了用于与聚酯(PET)共挤多层吹塑用尼龙纳米复合材料Imperm,用作PET/PA/PET三层瓶的阻隔芯层材料。该芯层的尼龙是用日本三菱瓦斯化学公司的阻隔型无定形尼龙MXD6为基础树脂,加纳米粘土后大幅降低材料气体透过率,比PET的氧透过率小100倍。目前,该材料已用于不消毒啤酒瓶。Imperm芯层厚度占瓶层总厚的10%,Imperm与PET间不需粘接层,也不影响瓶子的透明度。
另一个引人注目的应用是用于包装的纳米尼龙,该产品由美国Honeywell公司开发的,商品名是Aegis OX。据称该材料内含未公开的吸氧剂。Aegis OX中的纳米粘土作为钝化阻隔层,适量吸氧剂作为吸氧活性剂。这种材料比尼龙6的氧透过率低100倍,氧的渗入量几乎为零。Aegis OX作为三层聚酯(PET)瓶的阻隔层材料,使聚酯瓶达到啤酒4个月和果汁6个月的保质期要求,可以与玻璃瓶相比。这种组合技术的钝化阻隔层能防止吸氧剂过早耗尽,靠纳米粒子的均匀分散使吸氧剂指向“易出现氧”的地方,提高总的阻隔效率。Honey well公司认为这种阻隔系统可与现有任何其他啤酒阻隔包装竞争,完全满足120天内氧的渗入量和二氧化碳泄漏量的要求,并相信通过进一步精心调节工艺可达完全到180天的保质要求。这将推动和加快啤酒包装从玻璃瓶转向聚酯瓶的进程,2005年,用于这种技术的啤酒包装瓶数量超过了15亿个,果汁瓶数量接近4.6亿个。
除了啤酒瓶这个巨大市场外,德国Bayer公司正在把尼龙6纳米复合材料用于多层流延包装膜的芯层材料。早在1998年,Bayer公司就在德国杜塞尔多夫的世界塑料工业展览会上展出了其中两种产品,引起了许多用户的关注。汽车生产厂利用这种纳米尼龙的高刚性、耐热性和质轻等特点开发出了汽车机罩等制品。
UBE美国公司用尼龙6/尼龙66共混物制备的纳米尼龙,对汽油、甲醇和有机溶剂的透过率比填充尼龙6低3倍,现已用于汽车燃油系统共挤出多层燃油输送管线。
2、纳米聚烯烃
美国通用汽车(GM)公司宣布了第一个汽车纳米聚烯烃部件——上车踏板。该部件是用GM公司、树脂生产厂Basell公司、粘土生产厂Southern粘土产品公司三家经过4年合作开发的聚丙烯纳米复合材料制成的。该材料充分利用了纳米聚丙烯高刚性、质轻和低温下力学强度基本不降低的特性,纳米粘土含量为2%-3%,可取代20%-30%的滑石粉填充聚丙烯,而且重量轻20%,收缩率更小,低温韧性更佳。虽然这种踏板并不是十分重要,但该应用被认为是开发汽车外饰件纳米复合材料部件的重大进展。
利用纳米聚丙烯的阻隔性来作为食品包装材料已由Clariant公司率先推出工业化产品。比利时Kabelwerk Eupen公司以EVA(乙烯/醋酸乙烯酯共聚物)为基础树脂,通过熔融共混法加入3%-5%纳米硅酸盐,能显著降低复合材料放热量,同时能够防止材料燃烧时塑料滴落现象的发生,并具有良好的力学性能、耐化学品性和热稳定性,在电线、电缆工业上有良好的应用前景。
纳米硅酸粒子还可与紫外固化丙烯酸树脂混合制成高强度、透明,耐磨涂料。另外,无机纳米抗菌剂粒子可与塑料制成抗菌塑料,用于电冰箱门把手、门衬、空调器、电话、热水器、微波炉、电饭锅等制品时具有持久抗菌性。纳米硅酸盐加入聚乙烯农膜,可改进其保温性。